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Network Inference from Multiple Data Sources 
 
Introduction 
 

The 21st Century is often said to be the century for biology, just as the previous century 
has been said to be the century for physics. The main driving force behind the rise of biology is 
the development of new tools and technologies that allow new knowledge to be uncovered in a 
much faster and high throughput manner. The discovery of restriction enzymes, which resulted 
in the 1978 Nobel Prize being awarded to the discoverers, led to the development of recombinant 
DNA technology. The demand for low cost high throughput sequencing led many laboratories 
around the world to search for alternatives to the chemical method published by Maxam and 
Gilbert (1977) and the dideoxy chain termination method published by Sanger et al. (1977). One 
of the most successful high throughput sequencing techniques today is pyrosequencing, which is 
based on the “sequencing by synthesis” principle (Ronaghi et al., 1996; Ronaghi et al., 1998; 
Ronaghi, 2001). The whole genome of Nobel laureate James Watson (available online at 
http://jimwatsonsequence.cshl.edu) has been obtained in 2007 by 454 sequencing, which is a 
massively-parallel pyrosequencing system currently capable of sequencing roughly 100 
megabases of DNA per 7-hour run. DNA microarrays, which first emerged in the 1990s, allow 
researchers to monitor the expression levels of thousands of genes simultaneously. The 
combination of rapid, high resolution chromatography systems with fast-scanning mass 
spectrometers is one of the main technologies that has propelled the field of proteomics forward. 
Automated microscopy and established image analysis pipelines are also beginning to provide 
large amounts of spatial information. Last but not least, the generation of large databases and the 
development of novel computational algorithms have played important roles in helping 
biologists to understand life. 
 
Types of biological data that can be used 
 
 There are many different types of biological data, most of which are publicly and freely 
available, that can be used to infer networks or functional linkages. The first type of data is 
sequenced genomes. To date, the genomes of humans, all the major model organisms (for 
example mouse, Drosophila melanogaster, and C. elegans), some species closely related to the 
model organisms, more than 300 microbes, and many others have been sequenced. With such 
massive amount of data available, we should try to mine as much information as we can out of 
them. Firstly, we can ask if a group of genes is always coinherited in the same set of bacteria. 
Secondly, we can ask if a group of genes coevolves. In other words, rather than representing 
whether the presence of protein A is correlated with the presence of protein B, the coevolution 
metric assumes that A and B are coinherited and instead represents whether the sequence 
evolution of A’s relatives is correlated with that of B’s relatives (Srinivasan et al., unpublished). 
Thirdly, we can perform phylogenetic profiling. Essentially, we make a multiple sequence 
alignment of a group of proteins that share some reasonable amount of homology and then 
calculate the distance matrix, whose entries are measures of the evolutionary distances between 
each pair of sequences in the multiple alignment. Various methods, namely UPGMA 
(unweighted pair-group method using arithmetic averages), NJ (neighbor joining), MP 
(maximum parsimony), and ML (maximum likelihood), can be used to build phylogenetic trees 
and we can obtain different trees depending on the method used. Fourthly, we can ask if a group 
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of genes are colocated on the chromosome. In bacteria, proteins of closely related function are 
often transcribed from a single functional unit known as an operon. Fifthly, we can carry out the 
Rosetta Stone method, which identifies gene fusion events based solely on sequence comparison 
(Enright et al., 1999). Some protein pairs with similar functions fuse different domains into one 
single protein in other species. Proteins that carry out consecutive metabolic steps or are 
components of the same molecular complexes often end up being expressed as a single 
polypeptide chain to maximize kinetic or expression efficiency. In such an event, two non-
homologous proteins will align large proportions of their sequences to different parts of a third 
protein, which is referred to as the Rosetta Stone protein (Bowers et al., 2004).  
 

Expression profiling using either spotted DNA microarrays or lithography-printed chips 
is now a common technique to examine global transcriptional changes under various conditions. 
Thousands of microarray datasets for experiments done in myriad organisms are publicly 
available for analysis and they can be downloaded from databases such as KEGG’s expression 
database (http://www.genome.jp/kegg/expression/), the Stanford Microarray Database (Demeter 
et al., 2007), EBI’s ArrayExpress (Parkinson et al., 2007), and NCBI’s GEO (Barrett et al., 
2007). In particular, yeast is an extremely popular model organism for high throughput studies 
and its cell cycle and responses to environmental changes have been extensively investigated 
using microarrays (Spellman et al., 1998; Gasch et al., 2000; Causton et al., 2001). The yeast 
datasets can be downloaded from http://gasch.genetics.wisc.edu/datasets.html. 
 

Protein-DNA interactions are traditionally of great interest because a few master 
regulators or key transcription factors can control the expression of many genes to perform 
important cellular functions such as cell division. Microarrays have been used to determine on a 
genome scale which parts of the DNA a protein will bind to. This technique, known as ChIP 
(chromatin immunoprecipitation)-chip, has been used to localize protein binding sites in humans 
(Boyer et al., 2005; Odom et al., 2006), zebrafish (Wardle et al., 2006), and Drosophila 
(Zeitlinger et al., 2007) among other organisms. The method can also be employed on different 
cell types, like embryonic stem cells (Boyer et al., 2005) and hepatocytes (Odom et al., 2006). In 
recent years, due to the advent of high throughput sequencing, a modified method, known as 
ChIP-seq, has emerged. In essence, high throughput sequencing is performed after the reverse 
cross-linking step of ChIP instead of hybridizing on a microarray. Since ChIP-seq is fairly new, 
there are still not that many available experimental data generated by this technique, although it 
is likely to gain widespread acceptance in the near future.  

 
Intrinsic to the study of protein-DNA interactions is the identification of transcription 

factor binding sites or the identification of sequence motifs. The general strategy is to look for 
over-represented short stretches of nucleotides in the promoter regions of a set of genes 
(McGrath et al., 2007). Typically, a biologist will perform a series of microarray experiments 
and then look for clusters of genes whose expression profiles are similar (for example, a set of 
genes whose expression is strongly upregulated during heavy metal stresses or a set of genes 
whose expression profile shows the same cell cycle-regulated pattern). He or she will then feed 
the promoter regions of these genes into a motif-finding program, such as BioProspector (Liu et 
al., 2001), MEME (Bailey and Elkan, 1994), CisModule (Zhou and Wong, 2004), or AlignACE 
(Roth et al., 1998; Hughes et al., 2000). There is also a subscription-based database, called 
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TRANSFAC, available that contains data on transcription factors, their experimentally-proven 
binding sites, and regulated genes. 
 

Even though many biological networks have been built using gene expression data, 
biological systems ultimately need to be explained in terms of the activity, regulation and 
modification of proteins. The ubiquitous occurrence of post-transcriptional regulation makes 
mRNA an imperfect proxy for such information. To obtain global protein levels, 
Ghaemmaghami et al. (2003) have constructed a yeast library where each gene carries a tandem 
affinity purification (TAP) tag at its native locus. Using a single specific antibody against the tag, 
they could monitor global protein levels under any desired growth condition. 

   
Another useful type of genome-scale information that can be used for network inference 

is protein-protein interaction data. Biological functions such as DNA replication or cell division 
are typically executed by multi-protein complexes. Physical interactions are typically detected by 
yeast two-hybrid screens (or some variants like yeast three-hybrid screens or bacterial two-
hybrid screens) or co-affinity purification experiments followed by high throughput mass 
spectrometry. Recently, 2 papers that describe similar attempts to find protein complexes in 
budding yeast have been published. Gavin et al. (2006) and Krogan et al. (2006) performed 
genome-wide screens for protein complexes using TAP as well as matrix-assisted laser 
desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and liquid 
chromatography tandem mass spectrometry (LC-MS). Both papers reported finding about 500 
complexes in yeast.  
 

Besides physical interactions, we can also use information about genetic interactions, 
such as synthetic lethality, synthetic growth defect, dosage lethality, and dosage growth defect, 
to infer functional linkages. In particular, there is often functional redundancy in the cell for 
critical pathways, so one has to attempt to make double knockouts in order to detect synthetic 
lethality. Since deletion strains that cover the whole genome are available for the yeast 
Saccharomyces cerevisiae, a large scale synthetic lethal screen is possible and has been carried 
out by Tong et al. (2001).  

  
There are searchable online databases that contain physical interaction and genetic 

interaction data for public use. The Biological General Repository for Interaction Datasets 
(BioGRID) database (http://www.thebiogrid.org) houses and distributes collections of protein 
and genetic interactions from major model organism. BioGRID currently contains over 198 000 
interactions from six different species, as derived from both high-throughput studies and 
conventional focused studies (for example, Reguly et al., 2006). Other useful databases include 
the Database of Interacting Proteins (DIP) and the Molecular Interaction Database (MINT). 

 
Gene expression patterns and protein localization images are another important data 

source for infering networks because 2 genes that are expressed in the same tissue at the same 
developmental stage or 2 proteins that localize to the same subcellular compartment suggest that 
the 2 genes or proteins may be functionally linked. Furthermore, with automated microscopy that 
can take multi-field images over time without human intervention becoming more affordable, 
such data will likely grow in abundance in the near future. Some research groups have already 
undertaken large scale attempts to determine gene expression patterns and where most of the 
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proteins are localized within the cell. Huh et al. (2003) built a collection of yeast strains 
expressing full-length, fluorescently-tagged fusion proteins and they were able to classify these 
proteins, representing 75% of the yeast proteome, into 22 distinct subcellular localization 
categories. Haudry et al. (2008) built a central public repository called 4DXpress to house all the 
gene expression patterns obtained by whole mount in-situ hybridization for the model organisms 
zebrafish, medaka, Drosophila, and mouse. 
 

Besides those mentioned above, there are still many other types of useful data available 
for the purpose of network inference. One of these is categorical annotations, like Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Clusters of 
Orthologous Groups or (COG). Like other data types, we can use the annotations in 2 ways. The 
first is to use the annotations as part of the process in building the network. The second is to use 
the annotations as verification that the built network may potentially be correct. Another type of 
useful data is protein structures. Proteins that share structural motifs may have the same or 
similar cellular function and there are databases like the Protein Data Bank (PDB), which contain 
almost all know protein structures. Last but not least, Belle et al. (2006) have determined the 
half-lives of two-thirds of the yeast proteome. Using a collection of 4200 TAP-tagged strains, 
they monitored the abundance of each TAP-tagged protein by Western blot analysis as a function 
of time following inhibition of protein synthesis by cycloheximide.  
 
The need for multiple data sources 
 

The need to use multiple data sources is best illustrated by an example. Beer and 
Tavazoie (2004) attempted to predict gene expression from sequence. The overall objective is to 
learn how a given gene will be expressed, under certain experimental conditions, given its 5’ 
upstream DNA sequence. Given a set of microarray data, the authors first used a modified 
version of K-means clustering to partition the genes into groups that are coexpressed under a set 
of experimental conditions. Next, they used AlignACE to search for 12bp motifs up to 800bp 
upstream of each gene. They augmented the 615 putative motifs with 51 known and 
experimentally documented transcription factor binding sites. They then built a one-layer 
Bayesian network that mapped these sequence elements together with their properties to the 
expression patterns. With this network in place, they could theoretically take the sequence of any 
promoter region, look for the appropriate combination of motif features, and then predict the 
expression pattern for the corresponding gene under the conditions that the network has been 
trained.  

 
 Lam et al. (2008) provide evidence that the method developed by Beer and Tavazoie 
(2004) will not work. They study the transcription factor Pho4 in yeast, which activate the 
expression of 2 genes, pho5 and pho84, by binding directly to their promoters. Virtually  
identical number and type of functional Pho4 binding sites are present in the pho5 and pho84 
promoters, but yet, the 2 genes have different expression kinetics and thresholds. At intermediate 
levels of phosphate, the expression of pho84 is high but the expression of pho5 is low. Hence, 
the Bayesian network developed by Beer and Tavazoie (2004) will fail. The reason for the 
differential expression is that even though both promoters contain the same mixture of high and 
low affinity binding sites, the positions of the sites relative to nucleosome positions are different. 
The high affinity sites in the pho84 promoter are in nucleosome-free regions, unlike those in the 
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pho5 promoter. Hence, affinity of accessible binding sites determines quantitative expression 
behavior. In other words, we need information about chromatin structure as well as sequence in 
order to understand gene expression. The required information on epigenetics covers not just 
nucleosomal positions, but it also includes patterns of post-translational modifications on 
histones (Kurdistani et al., 2004), since certain histone marks are well-correlated with gene 
activation, while others are associated with gene repression.  
 

There are two general reasons why we should use multiple data sources to infer networks 
and functional linkages, if possible. The first is that the coverage and reliability of a single data 
source are inherently limited as one data type illuminates only limited aspects of the underlining 
biological mechanisms (Linghu et al., 2008). This explains why the method by Beer and 
Tavazoie (2004) will fail to predict the expression of pho5 and pho84. The second reason is that 
there are many functional linkages that are not very obvious if one is to look at a single data 
source. Instead, such linkages will only be revealed by moderate support from multiple 
evidences (Srinivasan et al., unpublished). There are also some false linkages that appear to be 
strong in one data type (which might perhaps be very noisy) but will fall apart when other data 
are included.  
 
Ways of integrating the data 
 

In the last decade, multiple heterogeneous data sources with different noise level and 
different coverage have often been utilized and integrated using primarily machine learning 
procedures, such as Bayesian methods, neural network, and decision tree. The reported 
integration results support the intuitive expectation that such integrated functional linkage 
networks can be more reliable than networks based only on a single data source (Linghu et al., 
2008). Here, I will describe some of the ways various data sources are used to infer networks. 
 
 Segal et al. (2003) use two types of data, namely gene expression data and categorical 
annotations. In the paper, they describe the use of a method named module networks to construct 
different regulatory programs for various clusters of genes. Module networks are fundamentally 
Bayesian networks, where dependency structure between the observed variables (genes in this 
case) is learnt. However, module networks rely on the assumption that many variables have 
similar behavior and therefore partition the variables into modules, so that the variables in each 
module share the same parents in the network and the same conditional probability distribution, 
i.e. similar variables are modeled by and constrained to the same parameters. The clustering is 
useful especially when the number of variables is large, as in the case of gene expression data.  
 

For each cluster of genes, a multi-layer Bayesian network is constructed. The features 
used rely on the sequence annotations and are a pre-determined set of 466 candidate regulators 
comprising transcription factors and signal transduction molecules. Each feature or regulator is 
allowed to have three discretized states, namely up-regulated, no change, or down-regulated.  
 

The learning procedure is iterative and is based on the Expectation Maximization (EM) 
algorithm. After taking as input a gene expression data set and a set of regulators and clustering 
of the data as initialization, the procedure alternates between two steps. In the M-step, it searches 
through the space of all possible models to find the most likely model, i.e. the model that 
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maximizes the likelihood (Bayesian) score, for each intermediate cluster. In the E-step, the 
procedure finds the model (regulatory program) that best explains the expression vector of each 
gene and then re-assigns the gene, if necessary, to the cluster having that model. Hence, the size 
and members of each cluster (module) may change with each iteration due to the re-assignments. 
By repeatedly considering combinations of possible regulator-target relationships, the procedure 
learns the best (locally optimal) network that can explain the underlying data. 
 

There are several shortcomings in the method developed by Segal et al. (2003). The 
procedure is constrained such that it does not assign a regulator gene to a module in which it is 
also a regulatory input. This is done as a gene can predict its own expression relatively easily. 
However, there cannot be auto-regulatory feedback loops in any of the learned models, which is 
physiologically unrealistic as many transcription factors are known to regulate their own 
expression.  
 

A key assumption of the paper is that the transcription level of regulators serves as a good 
proxy for their actual activity level. In some cases, this assumption is true, but unfortunately, 
many transcription factors are regulated by post-transcriptional mechanisms. These mechanisms 
include translational control (for example by miRNAs), nuclear import and export, 
phosphorylation, proteolytic degradation, or binding with small ligands. Ideally, we need to 
correlate the nuclear concentration of a regulatory protein in its active state with a regulated 
gene’s mRNA transcript abundance, but this information is difficult to obtain in general. 
 

The method presented can fail to pick up regulator-target relationships for a few other 
reasons. Firstly, regulation may occur only in some specific conditions where microarray data 
are not yet available. Secondly, there may be redundant pathways. If several regulators regulate 
the same target through parallel pathways, then the method identifies only one representative of 
the group. Thirdly, some regulatory relationships may occur between a regulator and only a few 
genes and thus cannot be generalized to an entire module. 
 

The module networks approach can be improved in one important way. As implemented 
by Segal et al. (2003), it currently uses only annotations (list of regulators) as its features. There 
is so much available biological information that has not been utilized. Instead, it should use 
richer features that include more data sources. For example, the authors can include information 
about sequence motifs. Besides the presence or absence of certain combinations of motifs, their 
features can include position of a motif from translational start (ATG), motif orientation, as well 
as order and spacing between particular motifs. The authors can also include information about 
the chromatin in the features, for example post-translational modifications of histones that 
indicate an active or a repressed gene state. 

 
Nguyen and D’haeseleer (2006) use 3 data types, namely gene expression data, 

categorical annotations (list of regulators), and sequence motifs. In their paper, the authors 
presented a deterministic mathematical strategy based on matrix algebra, called motif expression 
decomposition (MED) method, for explaining expression data under various conditions at the 
gene-by-gene level. Specifically, the method aims to minimize the following objective function 
 MAE − ,                 (1) 
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where E is a m genes by n conditions expression matrix (the experimental data), M is a m genes 
by k motifs matrix of condition-independent motif strengths (effect of each motif on gene 
expression), and A is a k regulators by n conditions matrix of condition-dependent regulator 
activities. Essentially, we have a matrix decomposition problem, where we want to break down 
the observed experimental data into 2 separate matrices M and A.  
 

The general scheme is as follows. The matrix M is first initialized. The entry Mij is 
constrained to zero if motif jth does not exist in the promoter of gene ith. The non-zero elements 
of M are set either as the weighted sum of the number of motif instances if motifs are represented 
in a position-specific weight matrix (PWM) (motifs that are closer to the consensus sequence are 
weighted more heavily) or by simply counting the number of times a motif occurs in a promoter 
if no PWM is available. Then, the algorithm iterates between finding the matrices A and M by 
trying to minimize the objective function. So, given E and M, the algorithm uses least squares to 
find the matrix A. Then given E and A, the algorithm minimizes over M, and so on. 

 
Nguyen and D’haeseleer (2006) note the importance of motif constraints or specific 

promoter context: motif geometry (location and orientation), motif exact sequence (i.e. its 
similarity to the consensus sequence), multiplicity, and co-occurrence with other motifs. By 
focusing primarily on motif location and orientation, the authors conclude that motifs do not 
always have the same level of influence on gene expression simply owing to their presence in the 
gene promoter. They also do not necessarily exert the largest influence on expression when they 
are near the start codon (ATG). The authors further conclude that there are four main types of 
motifs, namely short-range type (within 150bp from the start codon), mid-range type (150-
300bp), long-range type (300-450bp), and orientation-dependent type. 
 

There is one main area where the method can be improved. The authors should have 
extended their analysis to account for nonlinear motif-motif interactions. Such nonlinearities are 
commonplace in all organisms from simple bacteria promoters to complicated Drosophila 
enhancers. For example, many transcription factors bind as dimers or different transcription 
factors interact with each other to enhance their binding to the promoter, resulting in 
cooperativity. Naturally, the linear objective function (1) will have to be modified. 

 
The previous 2 papers (Segal et al., 2003; Nguyen and D’haeseleer, 2006) describe 

transcriptional networks. A certain set of transcription factors and signaling molecules (given by 
annotations) regulate a group of genes whose expression data under various conditions are 
known. The latter paper also includes motif information and tries to explain the actions of the 
regulators on the genes through the motifs of variable strengths.  

 
Lee et al. (2004) sought to construct an extensive gene network by considering 

functional, rather than physical, associations, realizing that each experiment, whether genetic, 
biochemical, or computational, adds evidence linking pairs of genes, with associated error rates 
and degree of coverage. The types of data they use include gene expression data, protein-protein 
interaction data from DIP, protein-protein interaction data from co-immunoprecipitaion 
experiments followed by mass spectrometry, protein-protein interaction data from yeast two-
hybrid assays, genetic interaction data from synthetic lethal screens, phylogenetic profiling, 
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Rosetta Stone method, literature mining data, and categorical annotations. In their framework, 
gene-gene linkages are probabilistic summaries representing functional coupling between genes.  
 

The authors develop a unified scoring scheme for testing the many heterogeneous 
datasets, even when the datasets are accompanied by their own intrinsic scoring schemes. This 
re-scoring by a single criterion allows the authors to measure directly the relative merit of each 
dataset and then to integrate the datasets with weights that reflect the merit. Each experiment is 
evaluated for its ability to reconstruct known gene pathways and systems by measuring the 
likelihood that pairs of genes are functionally linked conditioned on the evidence, calculated as a 
log likelihood score (LLS): 
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where the ratio P(L)/¬P(L) is estimated by counting the number of gene pairs with any shared 
functional annotation and those without any shared functional annotation among all possible 
gene pairs chosen from the set of annotated yeast genes. The ratio P(L|E)/ ¬P(L|E) is estimated 
by counting the number of gene pairs that share or do not share functional annotation and that are 
also supported by the given evidence. The formula can therefore be interpreted as the log 
likelihood of the linkage conditioned on the given evidence and corrected for background 
expectations of linkages. 
 

Various approaches for integrating information in order to more accurately define 
physical or functional interactions between proteins have been explored by various research 
groups. These approaches range from simple intersection or union to more sophisticated 
approaches, like the Bayesian method. However, the relative independence of the various 
datasets can be difficult to estimate in the Bayesian framework. Lee et al. (2004) have found 
empirically that a heuristic modification to the strict Bayesian approach performs well for 
integrating diverse functional linkage datasets. They rank order the log likelihood scores and 
then calculate the weighted sum (WS) scoring the functional linkage between a pair of genes as: 

 ∑
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where LLS represents the log likelihood score for the gene linkage from a single dataset, D is a 
free parameter roughly representing the relative degree of dependence between the various data 
sets, and i is the rank index in order of descending magnitude of the n log likelihood scores for 
the given gene pair. The free parameter D ranges from 1 to ∞ and is chosen to optimize overall 
performance on the functional benchmark. When D = 1, WS represents the simple sum of all log 
likelihood scores. D exhibits an optimal value of 1 in the case that all datasets are completely 
independent. As the optimal value of D increases, WS approaches the single maximum value of 
the set of log likelihood scores, indicating that the various datasets are strongly redundant (i.e. no 
new evidence is offered by the additional datasets over what is provided by the first set). 
Intermediate values of D represent exponentially diminishing belief in the additional evidence.  
 
Conclusions 
 

Today, with the sheer abundance of biological data, much of which are obtained through 
high throughput technologies like microarrays, the key issue is how to make sense of all these 
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data to gain novel biological insights. In the 1990s, when systems biology was still very much in 
its infancy, most biologists worked with just a single data source. For example, they would 
perform some microarray experiments to look at global expression levels in certain conditions 
and perform clustering analysis to find sets of genes that might be coregulated. Such an approach 
is still in use today and is actually sufficient in many instances. However, we can learn much 
more when we combine multiple data sources and try to infer networks and functional linkages.  
 
 Even though the last decade has seen many attempts to integrate heterogeneous data to 
predict gene function or build networks, there is still room for improvement. To the best of my 
knowledge, there are some datasets that have never been used as input to the training or 
determination process. One of them is protein structures. I believe the reason is that there are 
currently still too few solved crystal structures or solution structures available. Structural biology 
is still very much a time-consuming field and high resolution structures take time to be 
deciphered. Nevertheless, with large consortiums being given grants to solve the structures of 
well-conserved hypothetical proteins, the situation might change in the future as more structural 
information becomes publicly available. Another type of data that has never been used is images. 
The problem here is not quantity but instead lies in the need to convert an image into something 
that can be easily integrated into the training or determination process in a high throughput 
manner. We, as humans, can look at a set of images and easily say two proteins show the same 
cell cycle localization pattern in a bacterial cell or two genes are expressed in the notochord 
during E10.5 of mouse embryonic development. But to a computer, identifying such patterns in 
images is a difficult task. From identifying the boundary of an object (which may vary in size 
from image to image as the bacterial cell grows or the embryo develops) to demarcating the 
separate compartments within an object to making a decision whether there is fluorescence or 
staining in certain regions are all non-trivial. Hence, we need to improve or perhaps even 
develop new pattern classification algorithms in order to be able to utilize the numerous available 
images effectively.   
 
 Besides the need to better utilize all the types of data, there are two other areas that I feel 
can be improved. Firstly, all the current methods or procedures to infer gene function, predict 
functional linkages, or build networks are extremely time-consuming. Running WUBLAST to 
align the sequences of approximately 920000 microbial proteins versus each other (Srinivasan et 
al., unpublished) or building module networks, an iterative process (Segal et al., 2003), requires 
a lot of computational time and memory. The problem is going to get worse as more and more 
genomes are sequenced, more motifs are characterized (which will result in a much larger feature 
set for a Bayesian network), and a lot more of the other data types are being generated. Hence, 
there is an urgent need for computer scientists and mathematicians to device novel strategies or 
algorithms that might involve parallelization and task distribution to multiple processor units. 
Secondly, I feel that there is a lack of good interactive visualization tools that biologists can use 
to effectively examine constructed networks. The only one I know of is networks.stanford.edu, 
which is based on the work by Srinivasan et al. (unpublished). A biologist studying some 
particular system or cellular process should also have some say into what sort of data goes into 
building the network. Naturally, one does not always need to use every available dataset and the 
data sources to use is very much context dependent. For example, if we are investigating 
embryonic stem cells, there is in general no need to include ChIP-chip data from differentiated 
lymphocytes (unless we are looking at epigenetic memory during somatic cell nuclear transfer). 
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Hence, the ideal web interface, to me at least, is an input form asking me to choose the datasets, 
another form asking me to choose the algorithm or method to use to build the network, and the 
final result with interactive nodes and links so that I can zoom in and look at subgraphs if 
necessary.  
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